Skip the FFI!

Embedding Clang for C Interoperability

Jordan Rose John McCall
Compiler Engineer, Apple Compiler Engineer, Apple

Problem

Problem

Languages don't exist in a vacuum

Problem

Languages don't exist in a vacuum
But C has its own ABI

Problem

Languages don't exist in a vacuum
But C has its own ABI
And its APIs are written in C, not S{LANG}

Solutions?

Solutions?

Manually write glue code (JNI, Python, Ruby)

Solutions?

Manually write glue code (JNI, Python, Ruby)
Generate the glue code (SWIG)

Solutions?

Manually write glue code (JNI, Python, Ruby)
Generate the glue code (SWIG)
Extend C (C++, Objective-C)

Better solution:
just use Clang

Embedding Clang for C Interoperability

Clang as a library
Importing from C
ABI compatibility
Sharing an 1lvm: :Module

Goal

static 1inline
Point2f flipOverXAxis(Point2f point) {

/] .
h

| let flipped = flipOverXAxis(originalPoint)

Goal

static 1inline
Point2f flipOverXAxis(Point2f point) {

/] .
h

typedef struct {
float x, Vy;
} Point2f;

Goal

static 1inline
Point2f flipOverXAxis(Point2f point) {

/] .
h

| let flipped = flipOverXAxis(originalPoint)

Goal

No ex tern

/ al SYMmbo|

static 1nline
Point2f flipOverXAxis(Point2f point) {

/] .
h

| let flipped = flipOverXAxis(originalPoint)

Goal

No ex tern

/ al SYMmbo|

static 1inline
Point2f flipOverXAxis(Point2f point) {

| let flipped = flipOverXAxis(originalPoint)

From C to S{LANG}...

Roadmap

Roadmap

Setup aclang::CompilerInstance

Roadmap

Setup aclang::CompilerInstance

Load Clang modules

Roadmap

Setup aclang::CompilerInstance
Load Clang modules

Import declarations we care about

Setting up a clang: :CompilerInstance

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine()

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine() _

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine() —

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine() —

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine()

Attach custom observers

[etorg ~royonconty e -]
e
e

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine()

Attach custom observers

- Diagnostic consumer —

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine()
Attach custom observers

» Diagnostic consumer

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine()
Attach custom observers
- Diagnostic consumer —

» PP callbacks (for module import)

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine ()

Attach custom observers

» Diagnostic consumer

» PP callbacks (for module import) —

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine()
Attach custom observers
- Diagnostic consumer

» PP callbacks (for module import)

Manually run most of ExecuteAction()

Compilerinstance

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine()
Attach custom observers
- Diagnostic consumer

» PP callbacks (for module import)

Manually run most of ExecuteAction()

» Set up several compiler components Compilerinstance

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine()
Attach custom observers
- Diagnostic consumer

» PP callbacks (for module import)

Manually run most of ExecuteAction()

» Set up several compiler components Compilerinstance

- Parse a single decl from a dummy file

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine ()
Attach custom observers

- Diagnostic consumer

» PP callbacks (for module import)
Manually run most of ExecuteAction()

» Set up several compiler components Compilerinstance

- Parse a single decl from a dummy file
» Finalize the AST

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine ()
Attach custom observers

- Diagnostic consumer

» PP callbacks (for module import)
Manually run most of ExecuteAction()

» Set up several compiler components Compilerinstance

- Parse a single decl from a dummy file
. Einalize tha ACT

Setting up a clang: :CompilerInstance
ACfua//

Y Wor
createInvocationFromCommandLine() / ks "VE//

Attach custom observers

- Diagnostic consumer

» PP callbacks (for module import)
Manually run most of ExecuteAction()
» Set up several compiler components

- Parse a single decl from a dummy file
. Einalize tha ACT

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine()
Attach custom observers OU/qf

- Diagnostic consumer 4——'// be
» PP callbacks (for module import)

Manually run most of ExecuteAction()

» Set up several compiler components

- Parse a single decl from a dummy file
. Einalize tha ACT

Setting up a clang: :CompilerInstance

Attach custom observers Okay
» Diagnostic consumer /
» PP callbacks (for module import)

Manually run most of ExecuteAction()
» Set up several compiler components

- Parse a single decl from a dummy file
. Einalize tha ACT

Setting up a clang: :CompilerInstance

createInvocationFromCommandLine()

Attach custom observers Sqd/;

- Diagnostic consumer €ss *

» PP callbacks (for module import) /

Manually run most of ExecuteAction() / (fhis IS r

» Set up several compiler components he on/y . ea//y
- Parse a single decl from a dummy file eaSon)

. Einaliza tha ACT

Clang Modules

Clang Modules

Self-contained units of API

Clang Modules

Self-contained units of API

» No cross-header pollution!

Clang Modules

Self-contained units of API

» No cross-header pollution!

Separate semantics from syntax

Clang Modules

Self-contained units of API
» No cross-header pollution!
Separate semantics from syntax

- Same mechanism as PCH

Clang Modules

Self-contained units of API
» No cross-header pollution!
Separate semantics from syntax

- Same mechanism as PCH

2012 Developers’

e Modules Doug Gregor Meeting

lmporting Clang Modules

lmporting Clang Modules

CompilerInstance:: loadModule

lmporting Clang Modules

CompilerInstance:: loadModule

lmporting Clang Modules

CompilerInstance:: loadModule
Look up the decls we want

lmporting Clang Modules

CompilerInstance:: loadModule
Look up the decls we want

| flipOverXAxis(originalPoint)

lmporting Clang Modules

CompilerInstance:: loadModule

Look-up-the-deels-we-want

| flipOverXAxis(originalPoint)

lmporting Clang Modules

CompilerInstance:: loadModule

Look-up-the-deels-we-want
» Use TU-wide lookup and filter

| flipOverXAxis(originalPoint)

lmporting Clang Modules

CompilerInstance:: loadModule

Lookup-the-deelswe-want
» Use TU-wide lookup and filter

lmporting Clang Modules

CompilerInstance:: loadModule

Look up the decls we want

» Use TU-wide lookup and filter Ome’(h\ﬂg

lmporting Clang Modules

CompilerInstance:: loadModule

Lookup-the-deels-we-want Conp.
» Use TU-wide lookup and filter -

lmporting Clang Modules

CompilerInstance:: loadModule modu/e

Look-up-the decls-we want Conn.
» Use TU-wide lookup and filter -

lmporting Clang Modules

CompilerInstance:: loadModule modq/e

Look-up-the decls-we want Conn.
» Use TU-wide lookup and filter -

lmporting Declarations

static 1inline
Point2f flipOverXAxis(Point2f point) {

/] .
h

lmporting Declarations

lmporting Declarations

lmporting Declarations

lmporting Declarations

lmporting Declarations

lmporting Declarations

lmporting Declarations
...using clang: :ASTVisitor

=

lmporting Declarations
...using clang: :ASTVisitor

=

lmporting Declarations
...using clang: :ASTVisitor

=

lmporting Declarations
...using clang: :ASTVisitor

-

lmporting Declarations
...using clang: :ASTVisitor

=

lmporting Declarations
...using clang: :ASTVisitor

=

T Ty

lmporting Declarations
...using clang: :ASTVisitor

l

=

lmporting Declarations
...using clang: :ASTVisitor

l

-

lmporting Declarations
...using clang: :ASTVisitor

l

q‘—q

lmporting Declarations
...using clang: :ASTVisitor

l

q‘—q

lmporting Declarations
...using clang: :ASTVisitor

F - A |
g

q‘—q

lmporting Declarations
...using clang: :ASTVisitor

F - A |
g

q‘—q

lmporting Declarations
...using clang: :ASTVisitor

F - A |
g

q‘—q

lmporting Declarations
...using clang: :ASTVisitor

=

Success!

...and back to C

ABIs

Platforms and ABIs

Every language/platform combination forms an ABI
ABI defines how the language is implemented on that platform
Necessary for interoperation:

..between compilers offered by different vendors

..between different versions of the same compiler

..between compiled code and hand-written code (e.g. in assembly)

..between compiled code and various inspection/instrumentation tools

ABIs for other languages

All languages/extensions supported by Clang have ABIs defined mostly in terms of C

Caveat: often require additional linker support

Caveat: sometimes use slightly different calling conventions

"ltanium” C++ ABI: weak linkage
Visual Studio C++ ABI: weak linkage, different CC for member functions
GNUStep Objective-C ABI: pure C

Apple Objective-C ABI: some Apple-specific linker behavior
Objective-C Blocks ABI: pure C

ABIs for C

Often written by the architecture vendor and then tweaked by the OS vendor
Includes:

Stack alignment rules

Calling conventions and register use rules

Size/alignment of fundamental types

Layout rules for structs and unions

Existence of various extended types

Object file structure and linker behavior

Guaranteed runtime facilities

..and a whole lot more

ABls and undefined behavior

An ABIl doesn't mean language-specific restrictions aren't still in effect!

struct A {

virtual void foo():
b

void xloadVTable(A *xa) { return xreinterpret_cast<voidxx>(a); }

Still undefined behavior

Memory

Working with C values in memory

Often need to allocate storage for C values

All complete types in C have an ABI size and alignment:
getASTContext().getTypelnfolnChars(someType)

For normal types, sizeof(T) is always a multiple of alignof(T)

..but attributes on typedefs can arbitrarily change alignment requirements

Storage Padding

For many types, sizeof includes some extra storage:

Contents are undefined: not required to preserve those bits
If you share pointers with C code, it won't promise to preserve them either

Special case: C99 _Bool / C++ bool are always stored as 0 or 1 (not necessarily 1 byte)

struct/union Layout

Often tempting to do your own C struct layout:

struct/union Layout

Often tempting to do your own C struct layout:

It's a trap!

struct/union Layout

C/C++ language guarantees:
All union members have same address
First struct member has same address as struct

| ater struct member addresses > earlier struct member addresses

Universal C Layout Algorithm

struct.size = 0, struct.alignment = 1

for field in struct.fields:
struct.size = roundUpToAlignment(struct.size, field.alignment)
struct.alignment = max(struct.alignment, field.alignment)
offsets[field] = struct.size
struct.size += field.size

struct.size = roundUpToAlignment(struct.size, alignment)

Not guaranteed, but might as well be

Universal C Layout Algorithm?

Bitfield rules differ massively between platforms
Many different attributes and pragmas affect layout
C++...

Use Clang

Type info for struct/union types reflects results of layout
Can get offsets of individual members:

ASTContext::getASTRecordLayout(const RecordDecl *D)
IRGen provides interfaces for:

lowering types to IR

projecting the address of an ordinary field

loading and storing to a bitfield

Calls

Calls

Calls

Lowering from Clang function types to LLVM function types

Calls

Lowering from Clang function types to LLVM function types

Inputs: AST calling convention, parameter types, return type

Calls

Lowering from Clang function types to LLVM function types
Inputs: AST calling convention, parameter types, return type

Outputs: LLVM calling convention, parameter types, return type, parameter attributes

Why not just use the C type system?

Things that affect CC lowering:
Exact structure of unions
Existence and placement of bitfields
Attributes
Special cases for types that structurally resemble others
Everything!

Would have to render entire C type system in LLVM, including all extensions

Frontend/backend mutual aggression pact

Backend figures out how to represent different ways to pass arguments, results
Specific IR types
Specific attributes on call site

Frontend contrives to mutilate arguments into that form

Examples

static 1inline
Point2f flipOverXAxis(Point2f point) {

/] .
h

typedef struct {
float x, Vy;
} Point2f;

Examples

static 1nline
Point2f flipOverXAxis(Point2f point) {

[/ ..
h

typedef struct {
float x, v;
} Point2f:

// aarch64-apple-ios
define %struct.Point2f @flipOverXAxis(float, float)

Examples

static 1nline
Point2f flipOverXAxis(Point2f point) {

[/ ..
h

typedef struct {
float x, v;
} Point2f:

// 1386-apple—macosx
define 164 @flipOverXAxis(float, float)

Examples

static 1nline
Point2f flipOverXAxis(Point2f point) {

[/ ..
h

typedef struct {
float x, v;
} Point2f:

// thumbv7/-apple-10s
define void @flipOverXAxis(%struct.Point2fx sret, [2 x i32])

Examples

static 1nline
Point2f flipOverXAxis(Point2f point) {

[/ ..
h

typedef struct {
float x, v;
} Point2f:

// xX86_64—apple—-macosx
define <2 x float> @flipOverXAxis(<2 x float>)

Relief

LLVM does make an informal ABI guarantee:
A type is "reqgister-filling" if it's a pointer or pointer-sized integer. If:
1) all the arguments are register-filling and
2) the return value is either register-filling or void

Then the obvious type lowering will match the C ABI

Relief

Guaranteed by all the normal CPU backends
Does not apply to floats, structs, vectors, too-small integers, too-large integers, etc.

Extremely useful for free-coding calls to known functions in your language runtime

Breakdown in negotiations

The current situation is pretty gross and increasingly untenable
Backends feel the need to be pretty heroic about what types they accept

Difficult for frontends to tweak CCs, which is often useful when moving beyond C

Entente

Representing whole C type system is unworkable
We should consider going the other way:
Allow frontends more explicit control of registers and stack

Make consistent rules about how different IR types are passed otherwise

Use Clang

IRGen provides an interface for examining function type lowering
Extremely detailed, poorly documented

Not a good combination!

Still better than doing it yourself

In progress: extracting better interfaces to do this lowering

Sharing a Module with Clang

Types and global declarations

Your frontend’s IR types and Clang's can coexist in a module
Your frontend and Clang will sometimes both need to refer to the same entity

The types won't always match

Global declarations

IRGen is pretty forgiving about the type of a declaration
Feel free to emit your own declaration with its own type

Those code paths are well-covered in IRGen because of incomplete types

If Clang has to emit the definition, it may have to change the type
This will invalidate your own references to that declaration
..unless you hold onto them with a ValueHandle

..which is best practice anyway

L azy declaration emission

IRGen only emits certain entities if they're actually used:
static or inline functions

certain v-tables

To get IRGen to emit it, you simply:
tell IRGen that it has a definition (by adding it)
ask IRGen for a declaration
ensure that all deferred declarations are emitted

Better APIs for this are in progress

Summary

Summary

You can use Clang to import C types and declarations directly into your language
Let Clang handle the ABI rules for you instead of reinventing them

Most of the APIs for this could be improved

